deep learning
Machine Learning

Deep Learning

Today, global enterprises are investing in tools, technology and methodologies that deal with structured/ unstructured low-dimensional data, which can be analysed along limited parameters. However, over a period, companies start gathering a lot of highly complex data, like images, videos, However, over a period, companies start gathering a lot of highly complex data, like images, videos, gifs etc. Deep Learning comes to the rescue, to process and analyse such highly complex data.

From using past transactional and behavioural data to predict customers’ future habits, tastes and preferences and purchases to deciphering trends, contexts, attributes and much more, smart companies are using deep learning to deliver customer-delight instead of mere customer-satisfaction.

Traditional machine learning requires humans to provide context for data — an activity called Feature Engineering — so a machine can make better predictions. Instead, Deep learning uses a layered approach to make better decisions by constantly curating the data it is fed. It simplifies feature engineering in many ways, putting more work on machines, and ever more complex, self-learning models. Essentially, deep learning can assess and categorize data like our five human senses, and then make correlations like the human brain.

Our experts are trained on applying Random Forests, Naïve Bayes, Neural Networks and Support Vector Machine models to complex business data. How Deep learning can change the way business targets its customers.

Read more…

Machine Learning

Machine Learning @ThinkBumblebee is about embracing a process of questioning, reasoning, discovery, and experimentation. Machine learning is great for situations where there are large data sets and cases to learn from. We at ThinkBumblebee have used Machine Learning algorithms across Classification, Regression, Clustering, Feature Selection / Extraction, Anomaly Detection and Neural Nets.

We are helping companies address a variety of problems across semantic search (social data), customer retention, next best action, customer / audience segmentation, anomaly detection in sales, multichannel attribution and more. Our work in Machine Learning is boosted by the capabilities that we have built in managing complex unstructured batch/streaming data. These capabilities in Big Data helps us in implementing Machine Learning models in the production environment.

Machine Learning

Deep Learning

With the rise of high complex, unstructured data and ever changing dynamic business environment, there is a huge need for Real Time Decisioning. Enterprises are now rapidly moving to add streaming analytics as a strategy for becoming more agile and responsive to data available in real-time.

At ThinkBumblebee, we have the capability to build and deploy streaming analytics applications for across industries, verticals, use cases and data formats. For us data sources could be any – clickstream, social, sensor, logs or any other event data, we are able to provide a unified, high-throughput, low-latency platform for handling real-time data feeds.

Using our experience in Apache Spark / Apache Apex and knowledge of widely penetrated Data Storage Systems like Amazon S3, MS Azure and NoSQL databases like Druid, Cassandra, Hbase, we provide comprehensive Big Data Analytics solutions across a variety of business needs.

engagement-model-banner